| Centre<br>No.    |  |  |   |   | Pa | per Re | eferenc | e |     | Surname   | Initial(s) |
|------------------|--|--|---|---|----|--------|---------|---|-----|-----------|------------|
| Candidate<br>No. |  |  | 6 | 6 | 7  | 8      | /       | 0 | 1 R | Signature |            |

Paper Reference(s)

### 6678/01R

## **Edexcel GCE**

### **Mechanics M2**

# Advanced/Advanced Subsidiary

Thursday 6 June 2013 – Morning

Time: 1 hour 30 minutes

| Materials required for examination | Items included with question papers |
|------------------------------------|-------------------------------------|
| Mathematical Formulae (Pink)       | Nil                                 |

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

#### **Instructions to Candidates**

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take  $g = 9.8 \text{ m s}^{-2}$ .

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

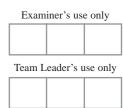
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

#### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may not gain full credit.


This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2013 Pearson Education Ltd.

Printer's Log. No. P42830A

W850/R6678/57570 5/5/5/





| Question<br>Number | Leave<br>Blank |
|--------------------|----------------|
| 1                  |                |
| 2                  |                |
| 3                  |                |
| 4                  |                |
| 5                  |                |
| 6                  |                |
| 7                  |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |

Turn over

**Total** 

**PEARSON** 

| 1. | A caravan of mass 600 kg is towed by a car of mass 900 kg along a straight horizontal road. The towbar joining the car to the caravan is modelled as a light rod parallel to the road. The total resistance to motion of the car is modelled as having magnitude 300 N. The total resistance to motion of the caravan is modelled as having magnitude 150 N. At a given instant the car and the caravan are moving with speed 20 m s $^{-1}$ and acceleration 0.2 m s $^{-2}$ . |     |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
|    | (a) Find the power being developed by the car's engine at this instant.                                                                                                                                                                                                                                                                                                                                                                                                         | (5) |  |  |  |  |  |  |  |
|    | (b) Find the tension in the towbar at this instant.                                                                                                                                                                                                                                                                                                                                                                                                                             | (2) |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |

| A ball of mass 0.2 kg is projected vertically upwards from a point $O$ with speed 20 m s <sup>-1</sup> . The non-gravitational resistance acting on the ball is modelled as a force of constant magnitude 1.24 N and the ball is modelled as a particle. Find, using the work-energy principle, the speed of the ball when it first reaches the point which is 8 m vertically above $O$ . |         |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|--|
| (6)                                                                                                                                                                                                                                                                                                                                                                                       | 400,00. |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |

3. A particle P moves along a straight line in such a way that at time t seconds its velocity  $v \text{ m s}^{-1}$  is given by

$$v = \frac{1}{2}t^2 - 3t + 4$$

Find

(a) the times when P is at rest,

**(4)** 

(b) the total distance travelled by P between t = 0 and t = 4.

**(5)** 



4. A rough circular cylinder of radius 4a is fixed to a rough horizontal plane with its axis horizontal. A uniform rod AB, of weight W and length  $6a\sqrt{3}$ , rests with its lower end A on the plane and a point C of the rod against the cylinder. The vertical plane through the rod is perpendicular to the axis of the cylinder. The rod is inclined at  $60^{\circ}$  to the horizontal, as shown in Figure 1.

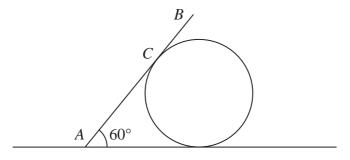



Figure 1

(a) Show that  $AC = 4a\sqrt{3}$ 

**(2)** 

The coefficient of friction between the rod and the cylinder is  $\frac{\sqrt{3}}{3}$  and the coefficient of friction between the rod and the plane is  $\mu$ . Given that friction is limiting at both A and C,

(b) find the value of  $\mu$ .

**(9)** 





| 5. | Two particles $P$ and $Q$ , of masses $2m$ and $m$ respectively, are on a smooth horizontal Particle $Q$ is at rest and particle $P$ collides directly with it when moving with specific $P$ and $P$ are the particle $P$ collides directly with it when moving with specific $P$ and $P$ are the particle $P$ are the particle $P$ and $P$ are the particle $P$ are the particle $P$ and $P$ are the particle $P$ and $P$ are the particle $P$ and $P$ are the particle $P$ are |      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | After the collision the total kinetic energy of the two particles is $\frac{3}{4}mu^2$ . Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|    | (a) the speed of $Q$ immediately after the collision,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (10) |
|    | (b) the coefficient of restitution between the particles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |



**6.** 

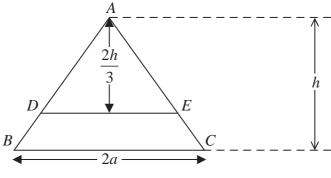



Figure 2

A uniform triangular lamina ABC of mass M is such that AB = AC, BC = 2a and the distance of A from BC is h. A line, parallel to BC and at a distance  $\frac{2h}{3}$  from A, cuts AB at D and cuts AC at E, as shown in Figure 2.

It is given that the mass of the trapezium *BCED* is  $\frac{5M}{9}$ .

(a) Show that the centre of mass of the trapezium BCED is  $\frac{7h}{45}$  from BC.

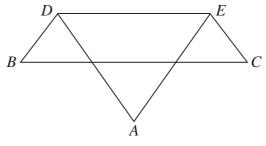



Figure 3

The portion ADE of the lamina is folded through  $180^{\circ}$  about DE to form the folded lamina shown in Figure 3.

(b) Find the distance of the centre of mass of the folded lamina from BC.

**(4)** 

The folded lamina is freely suspended from D and hangs in equilibrium. The angle between DE and the downward vertical is  $\alpha$ .

(c) Find  $\tan \alpha$  in terms of a and h.

**(4)** 



7.

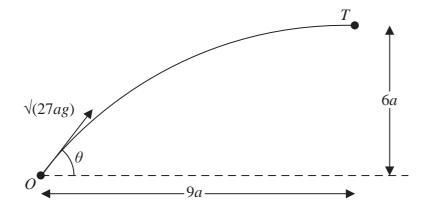



Figure 4

A small ball is projected from a fixed point O so as to hit a target T which is at a horizontal distance 9a from O and at a height 6a above the level of O. The ball is projected with speed  $\sqrt{(27ag)}$  at an angle  $\theta$  to the horizontal, as shown in Figure 4. The ball is modelled as a particle moving freely under gravity.

(a) Show that 
$$\tan^2 \theta - 6 \tan \theta + 5 = 0$$
 (7)

The two possible angles of projection are  $\theta_1$  and  $\theta_2$ , where  $\theta_1 > \theta_2$ .

(b) Find  $\tan \theta_1$  and  $\tan \theta_2$ . (3)

The particle is projected at the larger angle  $\theta_1$ .

- (c) Show that the time of flight from O to T is  $\sqrt{\frac{78a}{g}}$ .
- (d) Find the speed of the particle immediately before it hits T. (3)



